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One r ea s on  (never hi ther to  p resen ted)  fo r  the development  of p a r a s i t i c  convect ion in t he r -  
mal -d i f fus ion  columns due to concentra t ion  a s y m m e t r y  around their  p e r i m e t e r  is  se t  out; a 
method is  a lso  p roposed  fo r  taking this effect  into cods idera t ion  quant i ta t ively  when conduct-  
ing this p r o c e s s  in the liquid phase .  

It is  well known that  the ef f ic iency of the rmal -d i f fus ion  columns (as devices  for  separa t ing  liquid and 
gas  mixtures)  depends v e r y  l a rge ly  on the degree  of in t e r fe rence  on the p a r t  of the " remix ing"  flows which 
develop in the columns.  These  "pa ras i t i c "  [10] flows a re  usual ly  [1, 10, 11] a s soc ia t ed  with d i f fe rences  in 
the densi t ies  of the separa t ing  mixture  at va r ious  points  of the column c r o s s  section,  while sole r e s p o n s i -  
bi l i ty for  the densi ty  change is  ass igned  to the nonuniformity  of the t e m p e r a t u r e  field ove r  the c r o s s  sect ion 
of the column. 

Although in the overwhelming  ma jo r i t y  of c a se s  the r eason  for  pa ra s i t i c  convection is undoubtedly t e m -  
pe r a tu r e  a s y m m e t r y ,  the densi ty  va r i a t ions  in the column a r i s e  f r o m  not only the changes in volume ex -  
pansion but a lso  the changes  in concentra t ion around the column p e r i m e t e r .  

Figure  1 g ives  a schemat ic  r ep re sen ta t i on  of three  poss ib le  ca se s  of the development  of p a r a s i t i c  
convection; these a re  based  on a s impl i f ied  model  which a s s u m e s  that only two oppos i t e ly -d i rec ted  p a r a -  
si t ic  flows ex i s t  in the column. 

Case 1 (Fig. la) co r r e sponds  to an ideal  g e o m e t r y  of the column, but nonuniform conditions of hea t -  
ing and cooling. Here the t e m p e r a t u r e  nonuniformity  in the column c r o s s  section causes  a change of den-  
sity, and p a r a s i t i c  cu r r en t s  resu l t ,  i . e . ,  each  half  of the column will opera te  as  a column working s e l e c -  
t ively, and each  of these halves  will e s t ab l i sh  i t s  own concentra t ion dis tr ibut ion with r e s p e c t  to height. 
The dif ference between the ave rage  concent ra t ions  in each  half of the column also causes  changes in den-  
si ty,  which m a y  e i the r  coincide with or  be opposi te ly  d i rec ted  to the changes a r i s ing  f r o m  t e m p e r a t u r e  
a s y m m e t r y .  

In case  2 (Fig. lb) both su r faces  of the column a re  ideal ly  thermos ta ted ,  but the column i t se l f  is  
geome t r i ca l l y  imper fec t ,  being c h a r a c t e r i z e d  by the exis tence of eccent r ic i ty .  The difference between the 
gaps  in the two halves  of the column again leads to both t empe ra tu r e  and concentra t ion a s y m m e t r y .  Final ly  
case  3 (Fig. lc)  unites the two prev ious  cases ,  involving both nonuniform heating and cooling and a lso  geo -  
m e t r i c a l  defects  in the column. 

Thus the difference between the dens i t ies  of the separa t ing  mixture  in the two halves  of the column 
equals  the sum of the changes due to the t e m p e r a t u r e  and concentra t ion nonuniformit ies ,  i . e . ,  

Ap = 9 1~ (ST) -i- ? (8c)1, (1) 

where (aT) and (5c) a re  the t e m p e r a t u r e  and concentra t ion a s y m m e t r i e s ,  defined as  the d i f fe rences  between 
the mean t e m p e r a t u r e s  and concent ra t ions  in the lef t  and r ight  p a r t s  of the column. 

Ia  the subsequent  p resen ta t ion  we make the following s impl i fying assumpt ions .  1) Both pa ra s i t i c  flows 
have the same  c r o s s  section.  The bas i s  for  this a s sumpt ion  in the p r e s e n c e  of t e m p e r a t u r e  a s y m m e t r y  only 
was given in [2]. 2) The p a r a s i t i c  flows have only one (vertical)  ve loc i ty  component,  i . e . ,  we neglect  the 
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Fig. 1. Schematic representa t ion of possible 
case s of temperature  and concentrat ion a s y m -  
m e t r y  in thermal-diffusion columns. The 
varying thickness of the black line qualitatively 
indicates the nonunfformity of heat t ransfer .  

column, regarding it as a small  quantity. 3) We neg-  
lect  diffusion in the azimuthal  direction through the 
interface between the two flows; for  thermal  diffusion 
in the liquid phase this assumption is per fec t ly  well-  
based [2]. 

Allowing for  the foregoing assumptions,  and con-  
s idering each of the halves as a column in its own 
right, working with paras i t i c  selection, we obtain the 
following t ransfer  equations [1] 

de' 
i: = He' (1 - -  c') - -  K + ec', (2) 

dz 

den 
12 = H c "  (1 - - c " )  - -  K - -  - - ' ~ c " .  (3) 

dz 

In contras t  to [1] we shall take the coefficients H and K in the two paras i t i c  flows as being identical,  
so as to simplify the final equations; this will not introduce any ser ious  e r r o r  if the ratio e / 6  is of the o rde r  
of 1-2%. 

Subsequently in o rde r  to simplify the calculations and present  a Clear final picture we shall confine 
ourse lves  to a binary mixture;  we shall take: 1) c(1--c) ~ c, i . e . ,  c<< 1; 2) c(1--c) ~ p, where p is a con- 
stant. Then for  case 1 (if we r e m e m b e r  that in the s teady-sta te  condition divj = 0) we obtain the following 
instead of (2) and (3): 

d2c ' 

d~c" 
. . . .  ( I  - -  • - - - -  dy ~- 

Let the thermal-diffusion column be closed at both ends. 
tion we then obtain the obvious equations 

id,.__.,~ = ~c~, ./d~,=o = - , J c . ,  

which on allowing for  (2) and (3) and the condition c << 1 lead to the following two boundary conditions: 

( ) ( " )  dc' _ c ,  = O; - - c "  = O. �9 

dy v=Ye , dy �9 y=O 

On the other  hand, since the column as a whole operates  in the nonselective mode, the total flow of the 
component under considerat ion integrated over  the height of the column should be equal to zero for  any 
a r b i t r a r y  c rossec t ion  under s teady state conditions, i . e . ,  

~ r  

- -  - -  (1 - k  •  = o ,  ( 4 )  
@ 

dc ~ 
= 0. (5) 

@ 

For each of the column halves under cons idera -  

(6) 

i: + ]~ = 0, 

o r  according to (2) and (3) 

- -  + - -  - - ( t  + •  - -  • c" = 0 .  (7) 
@ dv 

Finally we must  r e m e m b e r  that the average concentrat ion over  the whole volume of the column should be 
equal to the initial value, i . e . ,  

2re (c' + c") @ = co. ( s )  
0 

The integration constants found f r o m  conditions (6), (7), (8) entering into the solution of Eqs. (4) and (5) 

c' = A: + Ble O+~)v, c" = "A~ + B~e O-~)v (9) 

take the fo rm 

As = 2coR• (1 - -  u) e ([+• 

B: ---- 2CoR (1 - -  • 
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where 

A S = - -  2c0R• (1 -t- x) e (l+~)ve, 

B2 = 2CoR (1 + ~) e O+~)ve, 

(10) 

(1 - -  • e-O+x)Ye Ye R (11) 
(1 x) 2 [1 - -  e-~ + (1 + • [e~-~)Y,_l] _ 2• (1_• 

Substitution of  (10) and (11) into (9) g ives  the following e x p r e s s i o n s  fo r  the concent ra t ion  in each  haft  of the 
column: 

c' = 2CoR (1 - -  x) [ze ~ + e~ (12) 

r = 2coR (1 + • e O+x)ye [e ~l-~)u - -z ] .  (13) 

The ave rage  concentra t ion  in any a r b i t r a r y  c r o s s  sect ion will be equal  to the half  sum of the concent ra t ions  
in each  of the halves ,  i . e . ,  on allowing for  (12) and (13) 

c ~  --2(c'1 + c") -- c0R {(i - - •  [• u+~)v~ + e (~+~)u] @ (1 -[- • e u+~)u~ [e (a-• ~ • (14) 

Putt ing x = 0 in (14) we obtain the well-known e x p r e s s i o n s  fo r  the change in concent ra t ion  ove r  the height 
of a column closed at  both ends in the absence  of p a r a s i t i c  convection. 

Since the degree  of separa t ion  in the column for  low concent ra t ions  is p r a c t i c a l l y  equal  to the ra t io  
of the concent ra t ions  at  the ends,  at  which y = Ye and y = 0, r e m e m b e r i n g  (14) we have 

G (1 + • [1 - -  2• + etl-• l 
q = -- (15) 

c i (l - -  • [1 + 2• + e -(l+~)ve] 

This r e su l t  coincides  with that obtained in [1]. However ,  ce r t a in  e r r o r s  were  commi t t ed  in the l a t t e r  for  
the case  under cons idera t ion  (c << 1), and the exp re s s ion  for  R and hence Eqs.  (12) and (13) accord ingly  
a s sumed  dif ferent  f o rm s .  

We thus see f r o m  (12) and (13) that the imper fec t ion  of the column g e o m e t r y  inevi tably  c r e a t e s  a 
difference in concent ra t ions  between the two p a r a s i t i c  flows, and hence an addit ional change in density,  
accounted for  by the second t e r m  in Eq. (1). F igure  2 shows how the concent ra t ions  v a r y  along the column 
in each  of the p a r a s i t i c  flows. We p a r t i c u l a r l y  notice that in one of the column halves  the concentra t ion  is  
even lower  than the ini t ial  value along the whole length for  the same values  of the p a r a m e t e r s  indicated in 
the f igure caption. 

This  means  that, if, in taking a sample  for  ana lys i s ,  that  sample  is ,  by pure  chance,  taken f r o m  
this p a r t i c u l a r  half  of the column, the r e s e a r c h  worke r  will obse rve ,  as it  were ,  a r e v e r s a l  of the sign of 
the Sorer  coefficient.  

Fo r  the case  c(1--c) ~ p the concent ra t ions  [1] a re  given by 

P P e -• (16) 
C t ~ C O - - -  - -  , - -  

- -  - ~  ( 1 7 )  r  P P e 

Let  us now find the ve loc i ty  of the p a r a s i t i c  flow. Let  us a s sume  (as in [3]) that the in te r face  between 
the two p a r a s i t i c  flows is  equivalent  to a solid wall. This  enables  us to use the well-known fo rmula  fo r  
calculat ing the loss  of p r e s s u r e  head a s soc ia t ed  with the flow of liquid in a channel in o r d e r  to de te rmine  
the ve loc i ty  

- - 2  AP L w 
- -  - - 9 ,  ( 1 8 )  

L 6 2 

where  the coeff icient  of f r ic t ion  in the na r row  slotted channel for  low Reynolds number s  is  X = 96/Re.  

The loss  of head defined by (18) equals  the motive fo rce  of the p a r a s i t i c  convection,  i . e . ,  the dif-  
fe rence  between the specif ic  g rav i t i e s  of the twoflows.  Thus r e m e m b e r i n g  that Re = wSp/rl  we find that 

w -  g62AP 
48n 
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or  allowing for  (1) 

48~ 

Since the p a r a s i t i c  flow a i s  r e l a t ed  to the mean ve loc i ty  by 

I p B ~ ,  ~ 
�9 a =  12 

on allowing for(19) we have 

(19) 

a gp~63B t~ (6T) + ? (6c)], 
960 

while the p a r a s i t i c  se lec t ion coeff icient  ~ = a / H  takes  the following f o r m  on r ep l ac ing  the coef f i c ien t  H of 
the t r a n s f e r  equation by i ts  actual  value 

15 
• [~ (6T) -~ ~? (6c)]. (20) 

t~s (AT) 2 

Let  us e x p r e s s  the Sore t  coeff ic ient  in t e r m s  of the c h a r a c t e r i s t i c s  of the column and the mixture  under -  
going separa t ion  by using the equation 

y~ = 504 sttDL (21) 

Af ter  introducing the nomencla ture  

7560 
~IDL (6T) ~DL~? 

a, 7560 -- b (22) 
gp[3 (AT) 2 ~ gp[~ (AVf 6' 

Eq. (20) m a y  be rewr i t t en  in the following fo rm:  

xy,  = a + b (8c). (23) 

A t t h e  beginning of this a r t i c le  we drew attention to the fact  that, in gene ra l  (Figl lc ) ,  t e m p e r a t u r e  a s y m -  
m e t r y  a rose  both as  a r e s u l t  of the nonuniformity  of the heating and cooling p r o c e s s e s  and as  a r e su l t  of 
the geome t r i ca l  imper fec t ion  of the column, i . e . ,  the quanti ty (ST) enter ing  into the p a r a m e t e r  a may  be 
e x p r e s s e d  as  a sum 

(6T) =- (6T)r + (6T)e, (24a) 

in which the t e m p e r a t u r e  a s y m m e t r y  due to the nonuniformity  of heat  t r a n s f e r  at  the su r f ace s  of the column 
(6T) and the t e m p e r a t u r e  a s y m m e t r y  due to the exis tence  of an eccen t r i c i t y  (6T)s m a y  na tura l ly  a s su me  
d i f fe ren t  signs.  These  quant i t ies  m a y  be de te rmined  on the bas i s  of e l e m e n t a r y  thermoteehnica l  ca l cu la -  
tions. Thus in the case  of a cyl indr ica l  column 

(6T)~ = eAT hl/h 2 - -  1 (24b) 
6 1 + hxlh ~ + h16/d3, t ' 

where the index 1 r e l a t e s  to the hot ter  heat  c a r r i e r .  

As r e g a r d s  the expres s ion  fo r  (6T) T, we shall  not p r e s e n t  this here  since the h e a t - t r a n s f e r  coef -  
f ic ients  which i t  contains (relat ing to the two halves  of the column) cannot in p r ac t i ce  be calculated,  being 
functions of many  random,  uncontrol lable f ac to r s .  Hence (6T) T cart only be found exper imenta l ly .  

An ana lys i s  of the ca lcula t ions  leading to Eq. (24b) shows that fo r  h i > h 2 the mean  t e m p e r a t u r e  of the 
liquid will be h igher  in the n a r r o w e r  p a r t  of the gap (the r ight -hand side in Fig. 1) than in the wider  pa r t ,  
and owing to the d i f ference  in dens i t ies  the Hquid in the left  half of the column will tend to move downward 
in the posi t ive  d i rec t ion of the z axis .  If h i < h e the p ic ture  will be the opposi te ,  and the liquid will tend to 
move upward in the left  half  of the column. On the o ther  hand, in the n a r r o w e r  p a r t  of the gap the concen-  
t ra t ion  of the t a rge t  component  will a lways  be higher  than in the wider  pa r t ,  in accordance  with the genera l  
theory  of the rmal -d i f fus ion  columns,  i . e . ,  c " - - c '  > 0. 

Hence the di f ference between the concent ra t ions  in the two pa ra s i t i c  flows may  e i the r  accentuate  the 
p a r a s i t i c  convect ion due to the t e m p e r a t u r e  nonuhiformity,  o r  e l se  weaken the o v e r - a l l  p a r a s i t i c  flow. 
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The o r ig ina l  equa t ions  (4) and (5) were  wr i t t en  on the a s s u m p t i o n  that  the flux of  concen t r a t i on  c '  
a r i s i n g  a s  a r e s u l t  of  the combined  ac t ion  of  the t e m p e r a t u r e  and concen t r a t i on  a s y m m e t r y  was  d i r e c t e d  in 
the pos i t ive  z sense ,  i . e . ,  ~ > 0. However ,  if  ~ < 0, we m u s t  r ep lace  c '  by  c" by c '  in Eqs .  (4) and (5) 
and a l so  in the b o u n d a r y  condi t ions  (6). This  subs t i tu t ion  has  no e f fec t  on Eq. (15), d e t e r m i n i n g  the d e g r e e  
of  sepa ra t ion ,  but the change in the s ign of  ~r m e a n s  that  i n s t ead  of (23) f o r  ~t < 0 we shal l  have 

• = a + b (8c), (25) 

while the d i f fe rence  in c o n c e n t r a t i o n s  should be wr i t t en  c ' - - c "  > 0. 

Thus  the d i f fe rence  in c o n c e n t r a t i o n s  be tween the two p a r a s i t i c  f low a v e r a g e d  o v e r  the height  of the 
column is 

(6c) = -~ 1 ( ~ ( c "  _ - -  c ' )  d y .  (26)  
ge d 

O 

Hence fo r  c (1- -c)  ~- p we obtain  the fol lowing ins t ead  of (26) on subs t i tu t ing  the c o r r e s p o n d i n g  va lues  
f r o m  (16) and (17) 

[ 1 ] (gc) = + 2p Y~ - -  ( I - -  e ~Y') (27) 
- • • ' 

while fo r  the case  c << 1, r e m e m b e r i n g  (11)-(13), we have 

(5c) = +" 2c 0 {(1 + • [e('-~)u~ _ 11 - -  (I - -  • [1 - -  e -~215 - -  2• (1 - -  • {(1 + • [e('-")Ue 

- -  1] -l- (1 --• [1 - -  e-"+~)YCl. 2• (I --  • (28) 

where  the upper  s ign c o r r e s p o n d s  to v a l u e s  u > 0 and the lower  to - - u  < 0. 

F o r  ~ = 1 a f t e r  r e s o l v i n g  the i n d e t e r m i n a c y  we obtain  

(6c)x= ' = • 2c ~ 2g~ (g~ + 1)-- 1 -k e -2u~ 
2y~ (g~ + 3) + 1 - -  e --~u~ 

F o r  v e r y  l a rge  va lues  of  the p a r a m e t e r  ~ f r o m  Eq. (28) we f ind (6c)~_.**o ~ 0, which c o r r e s p o n d s  
to the p h y s i c a l  e s s e n c e  of  the phenomenon  under  cons ide ra t ion ,  s ince a l a rge  value of ~ ind ica te s  an in -  
tens ive  agi ta t ion ,  a r educ t ion  in the deg ree  of  s epa ra t ion  as  impl ied  by Eq. (15), and hence  a ba lanc ing  of  
the c o n c e n t r a t i o n s  in the two p a r a s i t i c  f lows.  I t  i s  a l so  i n t e r e s t i n g  to note that  (Se) does  not  van i sh  when 

= 0. In this  case  Eqs .  (27) and (28) g ive :  

[(5c).=o = ___. pge, (30) 

1 
(Sc)x= 0 = =i= 2c 0 th -~-Ye, (31) 

i . e . ,  concen t r a t i on  a s y m m e t r y  will  even  e x i s t  when the same  deg ree  of  s epa ra t ion  is  r e a c h e d  as  in an 
idea l  t h e r m a l - d i f f u s i o n  column.  This  phenomenon  m a y  o c c u r  when 

a = T- 2 c o b t h + g e ,  (32) 

as may c lear ly  be seen f rom (23), i . e . ,  for  a specific value of the temperature asymmetry  determined by 
Eq. (24a). 

We see from (32), for example, that, if b > 0, then, in order that the parameter a should assume a 
negat ive  value,  i t  is  e s s e n t i a l  that  (putting (ST)T = 0) the h e a t - t r a n s f e r  coef f ic ien t  on the cold  su r f ac e  of 
the co lumn should be g r e a t e r  than on the hot side.  

Thus  the r e m o v a l  of  the t e m p e r a t u r e  nonun i fo rmi ty  [(ST) = 0] cannot  be r e g a r d e d  as  a p r o c e d u r e  
n e c e s s a r i l y  r educ ing  the p a r a s i t i c  convect ion .  This  compensa t i ng  e f fec t  will  o c c u r  if  both t e r m s  in (23) 
have the s a m e  s igns ;  o the rwise  any  r educ t i on  in the t e m p e r a t u r e  a s y m m e t r y  will  w o r s e n  the condi t ions  
of  s epa ra t ion  in the co lumn.  

An ana lys i s  of  Eqs .  (27) and (28) l eads  to the conc lus ion  than any  i n c r e a s e  in the d i m e n s i o n l e s s  length 
of  the co lumn should  p roduc e  an i n c r e a s e  in the concen t r a t i on  a s y m m e t r y ,  the m a x i m u m  value of  which is 
(SC)ye_.~o = 2c 0 fo r  the case  of  c << 1. Hence a r educ t ion  in Ye enab le s  us to r educe  the h a r m f u l  inf luence of  
p a r a s i t i c  convect ion .  
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Fig. 2. Ratio c / c  0 as  a function of 
the dimensionless  length of the col -  
umn in the left and r ight  halves for  
Ye = 5 ;  ~ t=0 .5 :  1) c ' /c0;  2) c " / c  0. 

Figure 3a and b shows how, in the case of mixtures  with c << 1, the pa r ame te r  b, constituting the 
cause of the concentrat ion a symmet ry ,  influences the efficiency of the thermal-diffusion column for  large 
and smal l  values of y - lnq* .  

The value of Ye = 10 is typical of many organic mixtures  usually separated in columns with 5 = 0.25 
mm and a height of the o rder  of 30-40 cm. We see f rom Fig. 3a that, even in the complete absence of t em-  
pera ture  nonuniformity around the column p e r i m e t e r  (a = 0), the concentrat ion nonuniformity is an ex t r eme-  
ly important  factor ,  sharply  reducing the efficiency of the column. 

The value of the concentrat ion expansion coefficient entering into the p a r a m e t e r  b for  a mixture of 
nonpolar liquids may be determined reasonably  accura te ly  f rom the relat ion 

I ( 0 p )  ~ p l - - P ~  (33) 
Y =  p -0c--c r P ' 

where the indices 1 and 2 respec t ive ly  r e f e r  to the pure components of the mixture.  

For  example, in the case of a mix ture  consist ing of n-heptane and a t race of n-hexadecane,  for an 
average gap temperature  of 40~ obtain the value T -- + 0.14. If the separat ion is ca r r i ed  out in a Column 
with 5 = 2.5- 10 -4 m and L = 0.3 m, and if we r e m e m b e r  that such physical  cha rac te r i s t i c s  as 3, P, ~7 should 
be equated to those of heptane on substituting into Eq. (22), then, r emember ing  that for  the mLxture under 
considerat ion D = 1 .24.10 -9 m2/sec,  for  A T  ~ 40~ we obtain the value b = + 1.9- 103. I ~ t  the initial con-  
cent-ration of n-hexadecane in the mixture be c o = 10 -3. Then bc 0 = + 1.9. Since according to [4] this mix-  
ture has s = 5.2- 10 -3 deg -i ,  f rom Eq. (20) we find Ye = 11.4. If we now make use of the data of Fig. 3a, we 
see that, depending on the degree of tempera ture  a symmet ry ,  the efficiency of the column may fluctuate 
over  an ex t remely  wide range. This example is typical in that it es tabl ishes  the strong influence of con- 
centration iahomogeneity,  even for  compara t ive ly  low initial concentrations.  We may well consider  that for 
Ye ~ 10 the influence of this factor  only becomes negligibly small  when c o <- 10 -4. 

For  small  Ye, such as are  charac te r i s t i c  of liquid isotope mixtures,  concentrat ion a s y m m e t r y  should 
only appear  to a marked degree for large values of bc 0. For  these mixtures  experimental  data as to the 
densit ies only exist  for  cer ta in  deuter ized organic compounds [5]. 

However, to an accuracy  sufficient for  the problem under consideration,  we may calculate the con- 
centrat ion expansion coefficient f r o m  the equation 

AM 
Y = M ' (33a) 

where AM is  the difference between the molecular  weights of the two isotopic compounds. 

For  example, in the case of bromine isotopes in butyl bromide for  T -  333~ ~/= 0.012 in acolumn 
with the dimensions just  considered b ~ 80. Hence for  isotope mixtures  in the range e << 1 concentrat ion 
a s y m m e t r y  need not be taken into account in short  columns. However, on using longer columns the effect  
of this fac tor  may be ve ry  considerable,  as witnessed by the exper iments  of Abelson and Hoover [6]. 

Whereas  the p a r a m e t e r  b may be calculated f rom the known physical  cha rac te r i s t i c s  of the mixture 
being separated and the geomet r ica l  dimensions of the column, the determination of p a r a m e t e r  a encounters  
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Fig. 3. Eff ic iency of the the rmal -d i f fus ion  column 
lnq/ laq* as  a function of the concentra t ion  a s y m m e t r y  
bc 0 fo r  va r ious  t e m p e r a t u r e  a s y m m e t r i e s  a) (Ye = 10 
a n d c < < l )  l ) a = + 1 0 ;  2 ) + 5 ;  3 ) + 2 ;  4) 0; 5 ) - - 2 ;  6) 
5; 7) --10; b) (Ye = 0.3 and c << i) 1) a =+5;  2) +2 ;  3) 
ol 4 ) - 2 ;  5 ) - 5 .  

se r ious  diff icul t ies  because  of the i nde t e rminacy  of the t e m p e r a t u r e  a s y m m e t r y ,  as  e x p r e s s e d  by Eq. (24a). 
With modern  methods of calculat ing h e a t - t r a n s f e r  coeff ic ients ,  and assuming  ca re fu l  p r e p a r a t i o n  of the 
column, the second t e r m  in this equation m a y  be calcula ted to an acceptable  a c c u r a c y  by Eq. (24b). As 
r e g a r d s  the f i r s t  t e rm ,  as  a l r eady  noted, this has to be de te rmined  exper imenta l ly .  The poss ib i l i ty  thus 
a r i s e s  of using the the rma l -d i f fus ion  column as  an in s t rumen t  for  de te rmin ing  the Sore t  coeff icient  in m i x -  
tu re s  fo r  which the t radi t ional  method (based on the use of a cell) is  ineffect ive.  To this end we have to 
c a r r y  out an e x p e r i m e n t  with a s tandard  mix ture  the Sore t  coeff icient  of which is  a l r e ady  known, so that 
the quantity Ye is  known also [see E q .  (21)]. The degree  of separa t ion  q i s  de te rmined  by exper iment .  
Then by using Eq. (15) we find the p a r a s i t i c  se lec t ion p a r a m e t e r  ~4, and f r o m  Eq. (23) the unknown p a r a -  
m e t e r  a.  The e x p e r i m e n t s  with the t es t  mix ture  should be c a r r i e d  out with the same  column a s s e m b l y ,  
and the same flows of heating and cooling c a r r i e r s ;  the new value of a will, on the bas i s  of Eq. (2), take 
the f o r m  

a a ( ~ID ~( gp[8 / (AT)It (ST) 
= s t \ - ~ - j k - ~ - ] s  t (AT) 2 (ST)st , (34) 

where the index "s t"  r e l a t e s  to the s tandard mixture .  The expe r imen ta l  value of the degree  of separa t ion  
p rov ides  us with a s y s t e m  of two equat ions (15) and (23), containing two unknowns Ye and x ,  the f i r s t  of 
which contains the des i r ed  Sore t  coefficient.  

In conclusion,  i t  i s  useful  to note that the new approach  to the quanti tat ive ana lys i s  of p a r a s i t i c  con-  
vect ion se t  out in this p a p e r  has  no connection with the so -ca l l ed  "forgot ten effect"  ment ioned e l sewhere  
[7-9]. 

This e f fec t  a r i s e s  as a r e s u l t  of changes  in densi ty  with changing concentrat ion,  not in the pa ra s i t i c  
flows, which the au thors  of the p a p e r s  in quest ion neve r  considered,  but in the main  convect ive flows; as  
indicated in [7, 8] the influence of this e f fec t  in the region of low concent ra t ions  is  negl igibly smal l ,  as  in 
the case  of a smal l  concentra t ion  expansion coefficient.  
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The special feature of our own theory lies in the fact that it establishes the substantial influence of the 
concentration asymmetry  arising in parasi t ic convective flows on the efficiency of the column under standard 
operating conditions for small values of the initial concentrations. As indicated in [9], the "forgotten effect" 
has no influence on the final resul t  of the separation process  under steady-state conditions. 

Ap = Pv--P2 ; 
P 
fl = (I/p )(SP lST); 
7 = (i/p)(ap/~C)T; 

(6T) 
(6c) 
J 
c 
H = gflp2s63(AT)2B/6!~; 
K = g2p3f1257(AT)2B/91y~D; 
5 
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{Y 
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Ye = lnq* = HL/K; 
q* 
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aj 

hj = c~jdij/[1 + ajdij In (dex/din)i/~wi], dij 
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Xwi 
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N O T A T I O N  

is the density; 

is the temperature asymmetry;  
is the concentration asymmetry;  
is the flow of the target component; 
is the concentration; 

iS 
iS 
IS 

IS 

IS 

1S 

IS 

the gap between the hot and cold walls; 
the per imeter  of the separating gap; 
the temperature difference; 
the Soret coefficient; 
the diffusion coefficient; 
the parasit ic flow; 
the vert ical  coordinate; 

is the length of column; 

is the degree of separation in the column without parasit ic 
convection; 

is the degree of separation in the column with parasi t ic con- 
vection; 

is the pressure  drop; 
is the mean velocity of the parasi t ic  flow; 
is the viscosity; 
is the heat- t ransfer  coefficient f rom the side of the j- th heat 

ca r r i e r ;  
are the diameter of the i-th cylinder f rom the side of the j- th 

heat ca r r ie r ;  
is the ratio of the external and internal diameters of the i- th 

cylinder; 
is the diameter of the annular gap; 
is the thermal conductivity of the wall of the i - th  cylinder; 
is the thermal conductivity of the mixture being separated; 
is the molecular weight; 
is the eccentricity. 

S u b s c r i p t s  

one and two pr imes respectively re fe r  to the f i r s t  and second parasi t ic flows; 
e denotes positive end of the column; 
i denotes negative end of the column, 

1. 
2. 

3. 
4. 
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