EFFECT OF CONCENTRATION ASYMMETRY ON THE
EFFECTIVENESS OF THERMAL-DIFFUSION COLUMNS

G. D. Rabinovich ‘ UDC 621.039.3

One reason (never hitherto presented) for the development of parasitic convection in ther~
mal-diffusion columns due to concentration asymmetry around their perimeter is set out; a
method is also proposed for taking this effect into consideration quantitatively when conduct-
ing this process in the liquid phase.

It is well known that the efficiency of thermal-diffusion columns (as devices for separating liquid and
gas mixtures) depends very largely on the degree of interference on the part of the "remixing" flows which
develop in the columns. These "parasitic" [10] flows are usually [1, 10, 11} associated with differences in
the densities of the separating mixture at various points of the column cross section, while sole responsi-
bility for the density change is assigned to the nonuniformity of the temperature field over the cross section
of the column.

Although in the overwhelming majority of cases the reason for parasitic convection is undoubtedly tem-
perature asymmetry, the density variations in the column arise from not only the changes in volume ex-
pansion but also the changes in concentration around the column perimeter.

Figure 1 gives a schematic representation of three possible cases of the development of parasitic
convection; these are based on a simplified model which assumes that only two oppositely-directed para-
sitic flows exist in the column. :

Case 1 (Fig. la) corresponds to an ideal geometry of the column, but nonuniform conditions of heat-
ing and cooling. Here the temperature nonuniformity in the column cross section causes a change of den-
sity, and parasitic currents result, i.e., each half of the column will operate as a column working selec-
tively, and each of these halves will establish its own concentration distribution with respect to height.
The difference between the average concentrations in each half of the column also causes changes in den-
sity, which may either coincide with or be oppositely directed to the changes arising from temperature
asymmetry.

In case 2 (Fig. 1b) both surfaces of the column are ideally thermostated, but the column itself is
geometrically imperfect, being characterized by the existence of eccentricity. The difference between the
gaps in the two halves of the column again leads to both temperature and concentration asymmetry. Finally
case 3 (Fig. 1c) unites the two previous cases, involving both nonuniform heating and cooling and also geo-
metrical defects in the column,

Thus the difference between the densities of the separating mixture in the two halves of the column
equals the sum of the changes due to the temperature and concentration nonuniformities, i.e.,

Ap = p[BOT) + v (o), : ‘ 1)

where (6T) and (6c) are the temperature and concentration asymmetries, defined as the differences between
the mean temperatures and concentrations in the left and right parts of the column.

In the subsequent presentation we make the following simplifying assumptions. 1) Both parasitic flows
have the same cross section. The basis for this assumption in the presence of temperature asymmetry only
was given in [2]. 2) The parasitic flows have only one (vertical) velocity component, i.e., we neglect the
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column, regarding it as a small quantity. 3) We neg-
lect diffusion in the azimuthal direction through the
interface between the two flows; for thermal diffusion
in the liquid phase this assumption is perfectly well-
based [2].

Allowing for the foregoing assumptions, and con-
sidering each of the halves as a column in its own
right, working with parasitic selection, we obtain the
following transfer equations [1]

Fig. 1. Schematic representation of possible
cases of temperature and concentration asym-
metry in thermal-~diffusion columns. The

varying thickness of the black line qualitatively iy = He' (1 —¢')—K

2
indicates the nonuniformity of heat transfer. @

e
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In contrast to [1] we shall take the coefficients H and K in the two parasitic flows as being identical,
so as to simplify the final equauons, this will not introduce any serious error if the ratio €/6 is of the order
of 1-2%.

Subsequently in order to simplify the calculations and present a clear final picture we shall confine
ourselves to a binary mixture; we shall take: 1) c(l—c) ® ¢, i.e., ¢<1; 2) ¢(l1—c) = p, where p is a con-
stant. Then for case 1 (if we remember that in the steady-state condition divj = 0) we obtain the following
instead of (2) and (3):

—or". ®3)
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Let the thermal-diffusion column be closed at both ends. For each of the column halves under considera-
tion we then obtain the obvious equations i

hly:;gc O'Cc, ”y -9 = —OC,

which on allowing for (2) and (3) and the condition ¢ << 1 lead to the following two boundary conditions:

( de’ _c > _ 0’ ( dc “‘?” ) =0, (6)
dy =7, dy ‘

. y=0

On the other hand, since the column as a whole operates in the nonselective mode, the total flow of the
component under consideration integrated over the height of the column should be equal to zero for any
arbitrary crossection under steady state conditions, i.e.,

]1+]2:0)

or according to (2) and (3)

d ’ d Jr

C + C
dy dy

Finally we must remember that the average concentration over the whole volume of the column should be

equal to the initial value, i.e.,

— (1 + we' —(1—u)c”"=0. (7

Ye
5 (© + ) dy = ¢, @®)
2y, p
The integration constants found from conditions (6), (7), (8) entering into the solution of Eqs. (4) and (5)
¢ = Ay + By, ¢ = A, 4 By ©
take the form

Ay = 2c,R% (1l —%) e“+u)y‘,

B, = 2,R (1—=),
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(14)y,
)

Ay =—2Ru(l+ n)e

(10)
B,=2c,R(1+mn e(l_mye,
where
. g (1 — ) e~ (
== - — e — . 11)
(1=l — & %) (1 T 1] — 2y, (1)

Substitution of (10) and (11} into (9) gives the following expressions for the concentration in each half of the
column;:

4%
¢ = 2,R (1 —=) [V.e(lﬂ)y‘? 4 ¢ y)y], (12)

¢ = 2R (1% e T g (13)
The average concentration in any arbitrary cross section will be equal to the half sum of the concentrations
in each of the halves, i.e., on allowing for (12)-and (13)

)y, e(1+x)y

¢z= ;_ (" + &) = c,R{(1 —x) [xe + T (1w e o0 (14)

Putting ® = 0 in (14) we obtain the well-known expressions for the change in concentration over the height
of a column closed at both ends in the absence of parasitic convection.

Since the degree of separation in the column for low concentrations is practically equal to the ratio
of the concentrations at the ends, at which y = yeg and y = 0, remembering (14) we have

(l—x)ye

c, 1 1 — 2% -

__ 0+l % - e_mrm] ' (15)
¢ (I—w[l+ 2nt-e ‘
This result coincides with that obtained in [1]. However, certain errors were committed in the latter for

the case under consideration (c < 1), and the expression for R and hence Egs. (12) and (13) accordingly
assumed different forms.

g =

We thus see from (12) and (13) that the imperfection of the column geometry inevitably creates a
difference in concentrations between the two parasitic flows, and hence an additional change in density,
accounted for by the second term in Eq. (1). Figure 2 shows how the concentrations vary along the column
in each of the parasitic flows. We particularly notice that in one of the column halves the concentration is
even lower than the initial value along the whole length for the same values of the parameters indicated in
the figure caption.

This means that, if, in taking a sample for analysis, that sample is, by pure chance, taken from
this particular half of the column, the research worker will observe, as it were, a reversal of the sign of
the Soret coefficient.

For the case c(l-—c) = p the concentrations [1] are given by

C’ — CO _— L L _._p_ e—-y.(yg~y) s (16)

® %
¢ =c,+ PP (17)
% %

Let us now find the velocity of the parasitic flow. Let us assume (as in [3]) that the interface between
the two parasitic flows is equivalent to a solid wall. This enables us fo use the well-known formula for
calculating the loss of pressure head associated with the flow of liquid in a channel in order to determine
the velocity

AP vow
A Y, 18
7 s 3 ° (18)

where the coefficient of friction in the narrow slotted channel for low Reynolds numbers is A = 96/Re.

The loss of head defined by (18) equals the motive force of the parasitic convection, i.e., the dif-
ference between the specific gravities of the twoflows. Thus remembering that Re = wop/n we find that
g62Ap

W= ,
481
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or allowing for (1)
= £L o7 + (e (19)
81 :

Since the parasitic flow o is related to the mean velocity by
: 1 — o
¢ = —— pBdw, Yo
, 5 PBow :
on allowing for (19) we have

_ BB gem
= g6y 1B OT) -+ v @),

. while the parasitic selection coefficient » = 0/H takes the following form on replacing the coefficient H of
the transfer equation by its actual value

15
U == ———
fs (AT)?

Let us express the Soret coefficient in terms of the characteristics of the column and the mixture under-
going separation by using the equation :

(B (6T) +- v @Be)l. (20)

y, — 504 —SPL @1)
gopb* '
After introducing the nomenclature
0 M =q, YSSO_AD_I.‘_‘V___ =} (22)
gop (AT)* & gop? (AT)2 6 -

Eq. (20) may be rewritten in the following form:
%Y, = a -+ b (8c). (23)

At the beginning of this article we drew attention to the fact that, in general (Figl 1c), temperature asym-
metry arose both as a result of the nonuniformity of the heating and cooling processes and as a result of
the geometrical imperfection of the column, i.e., the quantity (6T) entering into the parameter a may be
expressed as a sum :

(8T) = (6T)p -+ (T, (24a)

in which the temperature asymmetry due to the nonuniformity of heat transfer at the surfaces of the column
(6T) and the temperature asymmetry due to the existence of an eccentricity (6T)g may naturally assume
different signs. These quantities may be determined on the basis of elementary thermotechnical calcula-
tions. Thus in the case of a cylindrical column

AT i, —1 - (24b)
8  14hyhy+hdidh,

6T, ==

where the index 1 relates to the hotter heat carrier.

As regards the expression for (6T)yp, we shall not present this here since the heat-transfer coef-
ficients which it contains (relating to the two halveg of the column) cannot in practice be calculated, being
functions of many random, uncontrollable factors. Hence (6T)7 can only be found experimentally.

An analysis of the calculations leading to Eq. (24b) shows that for hy > h, the mean temperature of the
liquid will be higher in the narrower part of the gap (the right-hand side in Fig. 1) than in the wider part,
and owing to the difference in densities the liquid in the left half of the column will tend to move downward
in the positive direction of the z axis. If hy < h, the picture will be the opposite, and the liquid will tend to
move upward in the left half of the column. On the other hand, in the narrower part of the gap the concen-
tration of the target component will always be higher than in the wider part, in accordance with the general
theory of thermal-diffusion columns, i.e., ¢c"—c' > 0.

Hence the difference between the concentrations in the two parasitic flows may either accentuate the
parasitic convection due to the temperature nonuniformity, or else weaken the over-all parasitic flow,
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The original equations (4) and (5) were written on the assumption that the flux of concentration o’
arising as a result of the combined action of the temperature and concentration asymmetry was directed in
the positive z sense, i.e., ®> 0. However, if ® < 0, we must replace c' by c¢" by ¢' in Egs. (4) and (5)
and also in the boundary conditions (6). This substitution has no effect on Eq. (15), determining the degree
of separation, but the change in the sign of ® means that instead of (23) for ® < § we shall have

— %y, =a~+b(d), (25)
while the difference in concentrations should be written ¢'—c" > 0,

Thus the difference in concentrations between the two parasitic flow averaged over the height of the
column is

Ye
6c) = + —l—j " — ¢ dy. (26)
Ye

Hence for c(1—c) = p we obtain the following instead of (26) on substituting the corresponding values
from (16). and (17)

o) = & —2 [ye A ] , @7
b A bt
while for the case ¢ < 1, remembering (11)-(13), we have
8c) = + 2, {(1 + %)? MM 11 —x [l — e*““)y"] — 2y, (1 —x3)} {(1 - )2 [e("‘”)-‘/e
(6¢c) o {( ) [ I
— 1] (1 —=2(! ——e_“—‘_“)y"’] — 2%y (1 — %)} (28)
A )}

where the upper sign corresponds to values ® > 0 and the lower to —n < 0,

For n =1 after resolving the indeterminacy we obtain

_2ye

(5(:)x=1 =+ 2%, 2.y, + 1)— 14 e_2y )
29, (g, +3) +1—¢

For very large values of the parameter % from Eq. (28) we find (6¢), —» = 0, which corresponds

to the physical essence of the phenomenon under consideration, since a large value of % indicates an in-
tensive agitation, a reduction in the degree of separation as implied by Eq. (15), and hence a balancing of
the concentrations in the two parasitic flows. It is also interesting to note that (5¢) does not vanish when

%= 0, In this case Eqs. (27) and (28) give:

{(60)u=0 = i pye’ (30)
)0 = 2= 20, th —— s, @31)

i.e., concentration asymmetry will even exist when the same degree of separation is reached as in an
ideal thermal-diffusion column. This phenomenon may occur when

a=TF %pb th-—é—ye, | 32)

as may clearly be seen from (23), i.e., for a specific value of the temperature asymmetry determined by
Eq. (24a).

We see from (32), for example, that, if b > 0, then, in order that the parameter a should assume a
negative value, it is essential that (putting (6T)7 = 0) the heat~transfer coefficient on the cold surface of
the column should be greater than on the hot side.

Thus the removal of the temperature nonuniformity [(6T) = 0] cannot be regarded as a procedure
necessarily reducing the parasitic convection. This compensating effect will occur if both terms in (23)
have the same signs; otherwise any reduction in the temperature asymmetry will worsen the conditions
of separation in the column,

An analysis of Eqs. (27) and (28) leads fo the conclusion than any increase in the dimensionless length
of the column should produce an increase in the concentration asymmetry, the maximum value of which is
(5°)Ye"°° = 2¢g for the case of ¢ <1, Hence a reduction in ye enables us to reduce the harmful influence of
parasitic convection.
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/(z Fig. 2. Ratio c/c as a function of

P / the dimensionless length of the col-

umn in the left and right halves for
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Figure 3a and b shows how, in the case of mixfures with ¢ <1, the parameter b, constituting the
cause of the concentration asymmetry, influences the efficiency of the thermal-diffusion column for large
and small values of y = Ing*.

The value of ye = 10 is typical of many organic mixtures usually separated in columns with 6 = 0.25
mm and a height of the order of 30-40 cm. We see from Fig. 3a that, even in the complete absence of tem-~
perature nonuniformity around the column perimeter @ = 0), the concentration nonuniformity is an extreme-
ly important factor, sharply reducing the efficiency of the column.

The value of the concentration expansion coefficient entering into the parameter b for a mixture of
nonpolar liquids may be determined reasonably accurately from the relation

1 op ) P1—0,
- L ~ , 33)
¥ P (50 T P

where the indices 1 and 2 respectively refer to the pure components of the mixture.

~ For example, in the case of a mixture consisting of n-heptane and a trace of n-hexadecane, for an
average gap temperature of 40°C obtain the value ¥ = + 0.14. If the separation is carried out in a column
with 6 = 2,5-10-* m and L = 0.3 m, and if we remember that such physical characteristics as B, p, 1 should
be equated to those of heptane on substituting into Eq. (22), then, remembering that for the mixture under
consideration D = 1.24+ 10~? m?/sec, for AT = 40°C we obtain the value b = + 1.9-10°, ILet the initial con-
centration of n-hexadecane in the mixture be ¢ = 10-3. Then bey = + 1.9, Since according to [4] this mix-
ture has s = 5.2-10-3 deg'i, from Eq. (20) we find yg = 11.4. If we now make use of the data of Fig. 3a, we
see that, depending on the degree of temperature asymmetry, the efficiency of the column may fluctuate
over an extremely wide range. This example is typical in that it establishes the strong influence of con-
centration inhomogeneity, even for comparatively low initial concentrations. We may well consider that for
Ye ® 10 the influence of this factor only becomes negligibly small when ¢ = 1074,

For small y,, such as are characteristic of liquid isotope mixtures, concentration asymmetry should
only appear to a marked degree for large values of bcy. For these mixtures experimental data as to the
densities only exist for certain deuterized organic compounds [5].

However, to an accuracy sufficient for the problem under consideration, we may calculate the con-
centration expansion coefficient from the equation
AM

Y= T (33a)

where AM is the difference between the molecular weights of the two isotopic compounds.
For example, in the case of bromine isotopes in butyl bromide for T= 333°K, 7= 0.012 in a column
with the dimensions just considered b = 80. Hence for isotope mixtures in the range ¢ < 1 concentration

asymmetry need not be taken into account in short columns. However, on using longer columns the effect
of this factor may be very considerable, as witnessed by the experiments of Abelson and Hoover [6].

Whereas the parameter b may be calculated from the known physical characteristics of the mixture
being separated and the geometrical dimensions of the column, the determination of parameter ¢ encounters
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Fig. 3. Efficiency of the thermal-diffusion column
Inq/Ing* as a function of the concentration asymmetry
beg for various temperature asymmetries a) (ye = 10
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serious difficulties because of the indeterminacy of the temperature asymmetry, as expressed by Eq. (24a).
With modern methods of calculating heat-transfer coefficients, and assuming careful preparation of the
column, the second term in this equation may be calculated to an acceptable accuracy by Eq. (24b). As
regards the first term, as already noted, this has to be determined experimentally. The possibility thus
arises of using the thermal-diffusion column as an instrument for determining the Soret coefficient in mix~
tures for which the traditional method (based on the use of a cell) is ineffective. To this end we have to
carry out an experiment with a standard mixture the Soret coefficient of which is already known, so that
the quantity ye is known also [see Eq.. (21)]. The degree of separation g is determined by experiment.
Then by using Eq. (15) we find the parasitic selection parameter %, and from Eq. (23) the unknown para-
meter a. The experiments with the test mixture should be carried out with the same column assembly,
and the same flows of heating and cooling carriers; the new value of @ will, on the basis of Eq. (2), take
the form ’

a—=a
st gpﬁ

where the index "st" relates to the standard mixture. The experimental value of the degree of separation
provides us with a system of two equations (15) and (23), containing two unknowns ye and %, the first of
which contains the desired Soret coefficient.

(nD )( gps) (AT @T) (34)
D Js (AT)®  (T)s

In conclusion, itis useful to note that the new approach to the quantitative analysis of parasitic con-
vection set out in this paper has no connection with the so-called "forgotten effect" mentioned elsewhere
[7-9].

This effect arises as a result of changes in density with changing concentration, not in the parasitic
flows, which the authors of the papers in question never considered, but in the main convective flows; as
indicated in [7, 8] the influence of this effect in the region of low concentrations is negligibly small, as in
the case of a small concentration expansion coefficient.
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The special feature of our own theory lies in the fact that it establishes the substantial influence of the
concentration asymmetry arising in parasitic convective flows on the efficiency of the column under standard
operating conditions for small values of the initial concentrations. As indicated in [9], the "forgotten effect"

has no influence on the final result of the separation process under steady-state conditions.
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Subscripts

NOTATION

is the density;

is the temperature asymmetry;

is the concentration asymmetry;

is the flow of the target component;
is the concentration;

is the gap between the hot and cold walls;
is the perimeter of the separating gap;
is the temperature difference;

is the Soret coefficient;

is the diffusion coefficient;

is the parasitic flow;

is the vertical coordinate;

is the length of column;

is the degree of separation in the column without parasitic
convection;

is the degree of separation in the column with parasitic con-
vection;

is the pressure drop;

is the mean velocity of the parasitic flow;

is the viscosity;

is the heat-transfer coefficient from the side of the j-th heat
carrier;

are the diameter of the i-th cylinder from the side of the j-th
heat carrier;

is the ratio of the external and internal diameters of the i-th
cylinder;

is the diameter of the annular gap;

is the thermal conductivity of the wall of the i-th cylinder;

is the thermal conductivity of the mixture being separated;

is the molecular weight;

is the eccentricity.

one and two primes respectively refer to the first and second parasitic flows;

e denotes positive end of the column;
i denotes negative end of the column.
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